all repos — engine.git @ 70d5a5f53436c4848616132f2ff47c4036adc224

Unnamed repository; edit this file 'description' to name the repository.

src/simulation/physics.odin

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
package simulation

import "core:math"
import cm "../common"

DerivX :: struct {
	x: [3]cm.iFP,
	v: [3]cm.iFP,
	a: [3]cm.iFP,
} 

AABB :: struct {
		solid: bool,
    min: [3]cm.iFP,
    max: [3]cm.iFP,
}

Ray :: struct {
    origin: [3]cm.iFP,
    heading: [3]cm.iFP,
}

KinematicUpdate :: proc(delta: cm.iFP, entities: ^[dynamic]Maybe(DerivX), boundingBoxes: ^[dynamic]Maybe(AABB), tree: ^[dynamic]OctreeNode) {
	using cm
	for e,i in entities^ {
		eNew, ok := e.?
		if !ok do continue

		startPos := eNew.x
		eNew.v += VecMul(eNew.a, delta)
		eNew.x += VecMul(eNew.v, delta)

		entities[i] = eNew

		bb, alsoOk := boundingBoxes[i].?
		if !alsoOk do continue

		sector1 := FindEnclosingNode(bb,startPos,tree)
		sector2 := FindEnclosingNode(bb,eNew.x,tree)

		if !RemoveEntityFromNode(i, sector1) {
			for _ in 0..<MAX_TREE_DEPTH {
				if sector1.parent == nil do break
				removed := RemoveEntityFromNode(i, sector1.parent)
				if removed do break
				sector1 = sector1.parent
			}
		}
		AddEntityToNode(i, sector2)
	}
}

ResetForces :: proc(entities: ^[dynamic]Maybe(DerivX)) {
	using cm
	for e,i in entities^ {
		eNew, ok := e.?
		if !ok do continue
		eNew.a = [3]iFP{0,0,0}

		entities[i] = eNew
	}
}

ApplyGravity :: proc(entities: ^[dynamic]Maybe(DerivX), gravity: ^[dynamic]Maybe(bool)) {
	using cm
	for e,i in entities^ {
		eNew, ok1 := e.?
		_, ok2 := gravity[i].?
		if !(ok1 && ok2) do continue
		eNew.a += [3]iFP{0,GRAVITY,0}

		entities[i] = eNew
	}
}

MoveCast :: proc(delta: cm.iFP, entities: ^[dynamic]Maybe(DerivX), boundingBoxes: ^[dynamic]Maybe(AABB), callbacks: ^[dynamic]Maybe(proc(e1: int, e2: int, delta: cm.iFP)) , tree: ^[dynamic]OctreeNode) {
	using cm
	for ent,i in entities^ {
		eNew, ok1 := ent.?
		function, ok2 := callbacks[i].?
		bb, ok3 := boundingBoxes[i].?
		if !(ok1 && ok2 && ok3 ) do continue

		start := eNew
		eNew.x = VecMul(eNew.a,Div(Mul(delta,delta),TWO_METER)) + VecMul(eNew.v,delta)

		if math.abs(DotProduct(start.x - eNew.x,start.x - eNew.x)) < TOLERENCE do continue

		sector1 := FindEnclosingNode(bb,start.x,tree)
		sector2 := FindEnclosingNode(bb,eNew.x,tree)
		sector12 : ^OctreeNode

		if sector1 != sector2 { 
			sector12 = FindCommonNode(sector1,sector2,tree)
			RemoveEntityFromNode(i,sector1)
			AddEntityToNode(i, sector12)
		} else do sector12 = sector1
		
		_,intersect := AABBCollision(bb, start.x, bb, eNew.x)

		if !intersect { // Ray 
			IterateTree(i, delta, RaySweep, sector12)
		}
		IterateTree(i, delta, function, sector12) // Bounding Box
	}
}


AABBCollision :: proc(b1: AABB, p1: [3]cm.iFP, b2: AABB, p2: [3]cm.iFP) -> (normal: [3]cm.iFP, collided: bool) {
		using cm
		collision := true
		penetration :iFP = INF
		n : [3]iFP

		delta := p1-p2
		extent := b1.max-b1.min + b2.max-b2.min

		for d,i in delta {
			if math.abs(d) >= extent[i] do collision = false
		}

		if !collision do return n, collision

		gb1 := AABB { max = b1.max + p1 , min = b1.min + p1 }
		gb2 := AABB { max = b2.max + p2 , min = b2.min + p2 }

		distances := [6]iFP{
			gb2.max[0]-gb1.min[0],
			gb1.max[0]-gb2.min[0],
			gb2.max[1]-gb1.min[1],
			gb1.max[1]-gb2.min[1],
			gb2.max[2]-gb1.min[2],
			gb1.max[2]-gb2.min[2],
		}

		for d,i in distances {
			if d < penetration {
				penetration = d
				n = BOX_NORMALS[i]
			}
		}

    return n, collision
}

RayAABBCollision :: proc(ray: Ray, bb: AABB, pos: [3]cm.iFP) -> (hit: bool, t_hit: cm.iFP, normal: [3]cm.iFP) {
		using cm
		bmin := bb.min+pos
		bmax := bb.max+pos
    tEnter := -INF
    tExit  :=  INF
    normal  = [3]iFP{0,0,0}

    for i in 0..<3 {
        if ray.heading[i] == 0 {
            if ray.origin[i] < bmin[i] || ray.origin[i] > bmax[i] {
                return false, 0, normal
            }
            continue
        }

        inv_d := Div(METER, ray.heading[i])

        t1 := Mul(bmin[i] - ray.origin[i], inv_d);
        t2 := Mul(bmax[i] - ray.origin[i], inv_d);

        faceNormal: [3]iFP = [3]iFP{0,0,0};

        if t1 > t2 {
            temp := t1; t1 = t2; t2 = temp
            faceNormal[i] = METER
        } else do faceNormal[i] = -METER

        if t1 > tEnter {
            tEnter = t1
            normal = faceNormal
        }

        if t2 < tExit do tExit = t2
        if tEnter > tExit do return false, 0, normal
    }

    if tExit < 0 do return false, 0, normal
    if tEnter < 0 do tEnter = 0

    return true, tEnter, normal
}

//Do a ray test, if it hits do e1's collsion callback
//Use delta as a parameter
RaySweep :: proc(e1: int, e2: int, delta: cm.iFP) {
	using cm
	x1, ok1 := entityDerivX[0][e1].?
	function, ok2 := entityCollisionCallback[0][e1].?
	x2, ok3 := entityDerivX[0][e2].?
	bb2, ok4 := entityAABB[0][e2].?
	if !(ok1 && ok2 && ok3 && ok4) do return

	x1New := VecMul(x1.a,Div(Mul(delta,delta),TWO_METER)) + VecMul(x1.v,delta) + x1.x
	ray := Ray{origin=x1.x, heading=x1New}

	collided, t, _ := RayAABBCollision(ray,bb2,x2.x)
	if !collided do return
	
	function(e1,e2,t)
}

RigidInelasticCollision :: proc(e1: int, e2: int, delta: cm.iFP) {
	using cm
	x1, ok1 := entityDerivX[0][e1].?
	bb1, ok2 := entityAABB[0][e1].?
	x2, ok3 := entityDerivX[0][e2].?
	bb2, ok4 := entityAABB[0][e2].?
	if !(ok1 && ok2 && ok3 && ok4) do return
	if !(bb1.solid && bb2.solid) do return

	x1New := VecMul(x1.a,Div(Mul(delta,delta),TWO_METER)) + VecMul(x1.v,delta) + x1.x

	normal, collsion := AABBCollision(bb1,x1New,bb2,x2.x)
	if !collsion do return
	
	wallImpulse := DotProduct(normal,x1.v)
	reactionForce := DotProduct(normal,x1.a)
	if wallImpulse < 0 do x1.v -= VecMul(normal,wallImpulse)
	if reactionForce < 0 do x1.a -= VecMul(normal,reactionForce)

	entityDerivX[0][e1] = x1
}